Score : $300$ points
You are given $N$ positive integers $a_1, a_2, ..., a_N$.
For a non-negative integer $m$, let $f(m) = (m\ mod\ a_1) + (m\ mod\ a_2) + ... + (m\ mod\ a_N)$.
Here, $X\ mod\ Y$ denotes the remainder of the division of $X$ by $Y$.
Find the maximum value of $f$.
Input is given from Standard Input in the following format:
$N$ $a_1$ $a_2$ $...$ $a_N$
Print the maximum value of $f$.
3 3 4 6
10
$f(11) = (11\ mod\ 3) + (11\ mod\ 4) + (11\ mod\ 6) = 10$ is the maximum value of $f$.
5 7 46 11 20 11
90
7 994 518 941 851 647 2 581
4527