Score : $400$ points
You are given $N$ non-negative integers $A_1, A_2, ..., A_N$ and another non-negative integer $K$.
For a integer $X$ between $0$ and $K$ (inclusive), let $f(X) = (X$ XOR $A_1)$ $+$ $(X$ XOR $A_2)$ $+$ $...$ $+$ $(X$ XOR $A_N)$.
Here, for non-negative integers $a$ and $b$, $a$ XOR $b$ denotes the bitwise exclusive OR of $a$ and $b$.
Find the maximum value of $f$.
What is XOR?
The bitwise exclusive OR of $a$ and $b$, $X$, is defined as follows:
For example, $3$ XOR $5 = 6$. (When written in base two: $011$ XOR $101 = 110$.)
Input is given from Standard Input in the following format:
$N$ $K$ $A_1$ $A_2$ $...$ $A_N$
Print the maximum value of $f$.
3 7 1 6 3
14
The maximum value is: $f(4) = (4$ XOR $1) + (4$ XOR $6) + (4$ XOR $3) = 5 + 2 + 7 = 14$.
4 9 7 4 0 3
46
1 0 1000000000000
1000000000000