Score : $500$ points
You are given a positive integer $L$ in base two. How many pairs of non-negative integers $(a, b)$ satisfy the following conditions?
Since there can be extremely many such pairs, print the count modulo $10^9 + 7$.
What is XOR?
The XOR of integers $A$ and $B$, $A \mbox{ XOR } B$, is defined as follows:
For example, $3 \mbox{ XOR } 5 = 6$. (In base two: $011 \mbox{ XOR } 101 = 110$.)
Input is given from Standard Input in the following format:
$L$
Print the number of pairs $(a, b)$ that satisfy the conditions, modulo $10^9 + 7$.
10
5
Five pairs $(a, b)$ satisfy the conditions: $(0, 0), (0, 1), (1, 0), (0, 2)$ and $(2, 0)$.
1111111111111111111
162261460