Score : $300$ points
You are given two non-negative integers $L$ and $R$. We will choose two integers $i$ and $j$ such that $L \leq i < j \leq R$. Find the minimum possible value of $(i \times j) \mbox{ mod } 2019$.
Input is given from Standard Input in the following format:
$L$ $R$
Print the minimum possible value of $(i \times j) \mbox{ mod } 2019$ when $i$ and $j$ are chosen under the given condition.
2020 2040
2
When $(i, j) = (2020, 2021)$, $(i \times j) \mbox{ mod } 2019 = 2$.
4 5
20
We have only one choice: $(i, j) = (4, 5)$.