Score : $600$ points
Given are integers $L$ and $R$. Find the number, modulo $10^9 + 7$, of pairs of integers $(x, y)$ $(L \leq x \leq y \leq R)$ such that the remainder when $y$ is divided by $x$ is equal to $y \mbox{ XOR } x$.
The XOR of integers $A$ and $B$, $A \mbox{ XOR } B$, is defined as follows:
Input is given from Standard Input in the following format:
$L$ $R$
Print the number of pairs of integers $(x, y)$ $(L \leq x \leq y \leq R)$ satisfying the condition, modulo $10^9 + 7$.
2 3
3
Three pairs satisfy the condition: $(2, 2)$, $(2, 3)$, and $(3, 3)$.
10 100
604
1 1000000000000000000
68038601
Be sure to compute the number modulo $10^9 + 7$.