Score: $500$ points
Given is a permutation $P$ of $\{1, 2, \ldots, N\}$.
For a pair $(L, R) (1 \le L \lt R \le N)$, let $X_{L, R}$ be the second largest value among $P_L, P_{L+1}, \ldots, P_R$.
Find $\displaystyle \sum_{L=1}^{N-1} \sum_{R=L+1}^{N} X_{L,R}$.
Input is given from Standard Input in the following format:
$N$ $P_1$ $P_2$ $\ldots$ $P_N$
Print $\displaystyle \sum_{L=1}^{N-1} \sum_{R=L+1}^{N} X_{L,R}$.
3 2 3 1
5
$X_{1, 2} = 2, X_{1, 3} = 2$, and $X_{2, 3} = 1$, so the sum is $2 + 2 + 1 = 5$.
5 1 2 3 4 5
30
8 8 2 7 3 4 5 6 1
136