Score : $600$ points
Given are two sequences $a=\{a_0,\ldots,a_{N-1}\}$ and $b=\{b_0,\ldots,b_{N-1}\}$ of $N$ non-negative integers each.
Snuke will choose an integer $k$ such that $0 \leq k < N$ and an integer $x$ not less than $0$, to make a new sequence of length $N$, $a'=\{a_0',\ldots,a_{N-1}'\}$, as follows:
Find all pairs $(k,x)$ such that $a'$ will be equal to $b$.
The XOR of integers $A$ and $B$, $A \mbox{ XOR } B$, is defined as follows:
Input is given from Standard Input in the following format:
$N$ $a_0$ $a_1$ $...$ $a_{N-1}$ $b_0$ $b_1$ $...$ $b_{N-1}$
Print all pairs $(k, x)$ such that $a'$ and $b$ will be equal, using one line for each pair, in ascending order of $k$ (ascending order of $x$ for pairs with the same $k$).
If there are no such pairs, the output should be empty.
3 0 2 1 1 2 3
1 3
If $(k,x)=(1,3)$,
$a_0'=(a_1\ XOR \ 3)=1$
$a_1'=(a_2\ XOR \ 3)=2$
$a_2'=(a_0\ XOR \ 3)=3$
and we have $a' = b$.
5 0 0 0 0 0 2 2 2 2 2
0 2 1 2 2 2 3 2 4 2
6 0 1 3 7 6 4 1 5 4 6 2 3
2 2 5 5
2 1 2 0 0
No pairs may satisfy the condition.