Score : $300$ points
Find $\displaystyle{\sum_{a=1}^{K}\sum_{b=1}^{K}\sum_{c=1}^{K} \gcd(a,b,c)}$.
Here $\gcd(a,b,c)$ denotes the greatest common divisor of $a$, $b$, and $c$.
Input is given from Standard Input in the following format:
$K$
Print the value of $\displaystyle{\sum_{a=1}^{K}\sum_{b=1}^{K}\sum_{c=1}^{K} \gcd(a,b,c)}$.
2
9
$\gcd(1,1,1)+\gcd(1,1,2)+\gcd(1,2,1)+\gcd(1,2,2)$ $+\gcd(2,1,1)+\gcd(2,1,2)+\gcd(2,2,1)+\gcd(2,2,2)$ $=1+1+1+1+1+1+1+2=9$
Thus, the answer is $9$.
200
10813692