Score : $500$ points
Consider sequences $\{A_1,...,A_N\}$ of length $N$ consisting of integers between $1$ and $K$ (inclusive).
There are $K^N$ such sequences. Find the sum of $\gcd(A_1, ..., A_N)$ over all of them.
Since this sum can be enormous, print the value modulo $(10^9+7)$.
Here $\gcd(A_1, ..., A_N)$ denotes the greatest common divisor of $A_1, ..., A_N$.
Input is given from Standard Input in the following format:
$N$ $K$
Print the sum of $\gcd(A_1, ..., A_N)$ over all $K^N$ sequences, modulo $(10^9+7)$.
3 2
9
$\gcd(1,1,1)+\gcd(1,1,2)+\gcd(1,2,1)+\gcd(1,2,2)$ $+\gcd(2,1,1)+\gcd(2,1,2)+\gcd(2,2,1)+\gcd(2,2,2)$ $=1+1+1+1+1+1+1+2=9$
Thus, the answer is $9$.
3 200
10813692
100000 100000
742202979
Be sure to print the sum modulo $(10^9+7)$.