Score : $400$ points
We have $N+1$ integers: $10^{100}$, $10^{100}+1$, ..., $10^{100}+N$.
We will choose $K$ or more of these integers. Find the number of possible values of the sum of the chosen numbers, modulo $(10^9+7)$.
Input is given from Standard Input in the following format:
$N$ $K$
Print the number of possible values of the sum, modulo $(10^9+7)$.
3 2
10
The sum can take $10$ values, as follows:
200000 200001
1
We must choose all of the integers, so the sum can take just $1$ value.
141421 35623
220280457