Score : $400$ points
Given are integers $A$, $B$, and $N$.
Find the maximum possible value of $floor(Ax/B) - A × floor(x/B)$ for a non-negative integer $x$ not greater than $N$.
Here $floor(t)$ denotes the greatest integer not greater than the real number $t$.
Input is given from Standard Input in the following format:
$A$ $B$ $N$
Print the maximum possible value of $floor(Ax/B) - A × floor(x/B)$ for a non-negative integer $x$ not greater than $N$, as an integer.
5 7 4
2
When $x=3$, $floor(Ax/B)-A×floor(x/B) = floor(15/7) - 5×floor(3/7) = 2$. This is the maximum value possible.
11 10 9
9