Score : $400$ points
For a positive integer $X$, let $f(X)$ be the number of positive divisors of $X$.
Given a positive integer $N$, find $\sum_{K=1}^N K\times f(K)$.
Input is given from Standard Input in the following format:
$N$
Print the value $\sum_{K=1}^N K\times f(K)$.
4
23
We have $f(1)=1$, $f(2)=2$, $f(3)=2$, and $f(4)=3$, so the answer is $1\times 1 + 2\times 2 + 3\times 2 + 4\times 3 =23$.
100
26879
10000000
838627288460105
Watch out for overflows.