Score : $500$ points
Given are $N$ integers $A_1,\ldots,A_N$.
We will choose exactly $K$ of these elements. Find the maximum possible product of the chosen elements.
Then, print the maximum product modulo $(10^9+7)$, using an integer between $0$ and $10^9+6$ (inclusive).
Input is given from Standard Input in the following format:
$N$ $K$ $A_1$ $\ldots$ $A_N$
Print the maximum product modulo $(10^9+7)$, using an integer between $0$ and $10^9+6$ (inclusive).
4 2 1 2 -3 -4
12
The possible products of the two chosen elements are $2$, $-3$, $-4$, $-6$, $-8$, and $12$, so the maximum product is $12$.
4 3 -1 -2 -3 -4
1000000001
The possible products of the three chosen elements are $-24$, $-12$, $-8$, and $-6$, so the maximum product is $-6$.
We print this value modulo $(10^9+7)$, that is, $1000000001$.
2 1 -1 1000000000
1000000000
The possible products of the one chosen element are $-1$ and $1000000000$, so the maximum product is $1000000000$.
10 10 1000000000 100000000 10000000 1000000 100000 10000 1000 100 10 1
999983200
Be sure to print the product modulo $(10^9+7)$.