Score : $500$ points
Given are integer sequences $A = (a_1, a_2, \dots, a_N)$, $T = (t_1, t_2, \dots, t_N)$, and $X = (x_1, x_2, \dots, x_Q)$.
Let us define $N$ functions $f_1(x), f_2(x), \dots, f_N(x)$ as follows:
$f_i(x) = \begin{cases} x + a_i & (t_i = 1)\\ \max(x, a_i) & (t_i = 2)\\ \min(x, a_i) & (t_i = 3)\\ \end{cases}$
For each $i = 1, 2, \dots, Q$, find $f_N( \dots f_2(f_1(x_i)) \dots )$.
Input is given from Standard Input in the following format:
$N$ $a_1$ $t_1$ $a_2$ $t_2$ $\vdots$ $a_N$ $t_N$ $Q$ $x_1$ $x_2$ $\cdots$ $x_Q$
Print $Q$ lines. The $i$-th line should contain $f_N( \dots f_2(f_1(x_i)) \dots )$.
3 -10 2 10 1 10 3 5 -15 -10 -5 0 5
0 0 5 10 10
We have $f_1(x) = \max(x, -10), f_2(x) = x + 10, f_3(x) = \min(x, 10)$, thus: