Score : $300$ points
For a base number $X$, the product of multiplying it $Y$ times is called $X$ to the $Y$-th power and represented as $\text{pow}(X, Y)$. For example, we have $\text{pow}(2,3)=2\times 2\times 2=8$.
Given three integers $A$, $B$, and $C$, compare $\text{pow}(A,C)$ and $\text{pow}(B,C)$ to determine which is greater.
Input is given from Standard Input in the following format:
$A$ $B$ $C$
If $\text{pow}(A,C)< \text{pow}(B,C)$, print <
; if $\text{pow}(A,C)>\text{pow}(B,C)$, print >
; if $\text{pow}(A,C)=\text{pow}(B,C)$, print =
.
3 2 4
>
We have $\text{pow}(3,4)=81$ and $\text{pow}(2,4)=16$.
-7 7 2
=
We have $\text{pow}(-7,2)=49$ and $\text{pow}(7,2)=49$.
-8 6 3
<
We have $\text{pow}(-8,3)=-512$ and $\text{pow}(6,3)=216$.