Home


Contest: Task: Related: TaskD TaskF

Score : $500$ points

Problem Statement

Given integers $L$ and $L,R\ (L \le R)$, find the number of pairs $(x,y)$ of integers satisfying all of the conditions below:

  • $L \le x,y \le R$
  • Let $g$ be the greatest common divisor of $x$ and $y$. Then, the following holds.
    • $g \neq 1$, $\frac{x}{g} \neq 1$, and $\frac{y}{g} \neq 1$.

Constraints

  • All values in input are integers.
  • $1 \le L \le R \le 10^6$

Input

Input is given from Standard Input in the following format:

$L$ $R$

Output

Print the answer as an integer.


Sample Input 1

3 7

Sample Output 1

2

Let us take some number of pairs of integers, for example.

  • $(x,y)=(4,6)$ satisfies the conditions.
  • $(x,y)=(7,5)$ has $g=1$ and thus violates the condition.
  • $(x,y)=(6,3)$ has $\frac{y}{g}=1$ and thus violates the condition.

There are two pairs satisfying the conditions: $(x,y)=(4,6),(6,4)$.


Sample Input 2

4 10

Sample Output 2

12

Sample Input 3

1 1000000

Sample Output 3

392047955148