Score : $300$ points
You are given $N$ intervals numbered $1$ through $N$, that are as follows:
How many pairs of integers $(i,j)$ satisfying $1 \leq i \lt j \leq N$ are there such that Interval $i$ and Interval $j$ intersect?
Input is given from Standard Input in the following format:
$N$ $t_1$ $l_1$ $r_1$ $t_2$ $l_2$ $r_2$ $\hspace{1cm}\vdots$ $t_N$ $l_N$ $r_N$
Print the number of pairs of integers $(i,j)$ such that Interval $i$ and Interval $j$ intersect.
3 1 1 2 2 2 3 3 2 4
2
As defined in the Problem Statement, Interval $1$ is $[1,2]$, Interval $2$ is $[2,3)$, and Interval $3$ is $(2,4]$.
There are two pairs of integers $(i,j)$ such that Interval $i$ and Interval $j$ intersect: $(1,2)$ and $(2,3)$. For the first pair, the intersection is $[2,2]$, and for the second pair, the intersection is $(2,3)$.
19 4 210068409 221208102 4 16698200 910945203 4 76268400 259148323 4 370943597 566244098 1 428897569 509621647 4 250946752 823720939 1 642505376 868415584 2 619091266 868230936 2 306543999 654038915 4 486033777 715789416 1 527225177 583184546 2 885292456 900938599 3 264004185 486613484 2 345310564 818091848 1 152544274 521564293 4 13819154 555218434 3 507364086 545932412 4 797872271 935850549 2 415488246 685203817
102