Score : $600$ points
For non-negative integers $n$ and $m$, let us define the function $f(n, m)$ as follows, using a positive integer $K$.
$\displaystyle f(n, m) = \begin{cases} 0 & (n = 0) \\ n^K & (n \gt 0, m = 0) \\ f(n-1, m) + f(n, m-1) & (n \gt 0, m \gt 0) \end{cases}$
Given $N$, $M$, and $K$, find $f(N, M)$ modulo $(10 ^ 9 + 7)$.
Input is given from Standard Input in the following format:
$N$ $M$ $K$
Print $f(N, M)$ modulo $(10 ^ 9 + 7)$.
3 4 2
35
When $K = 2$, the values $f(n, m)$ for $n \leq 3, m \leq 4$ are as follows.
$m = 0$ | $m = 1$ | $m = 2$ | $m = 3$ | $m = 4$ | |
$n = 0$ | $0$ | $0$ | $0$ | $0$ | $0$ |
$n = 1$ | $1$ | $1$ | $1$ | $1$ | $1$ |
$n = 2$ | $4$ | $5$ | $6$ | $7$ | $8$ |
$n = 3$ | $9$ | $14$ | $20$ | $27$ | $35$ |
0 1 2
0
1000000000000000000 30 123456
297085514