Score : $300$ points
You are given two sequences: $A=(A_1,A_2, \ldots ,A_N)$ consisting of $N$ positive integers, and $B=(B_1, \ldots ,B_M)$ consisting of $M$ positive integers.
Find the minimum difference of an element of $A$ and an element of $B$, that is, $\displaystyle \min_{ 1\leq i\leq N}\displaystyle\min_{1\leq j\leq M} \lvert A_i-B_j\rvert$.
Input is given from Standard Input in the following format:
$N$ $M$ $A_1$ $A_2$ $\ldots$ $A_N$ $B_1$ $B_2$ $\ldots$ $B_M$
Print the answer.
2 2 1 6 4 9
2
Here is the difference for each of the four pair of an element of $A$ and an element of $B$: $\lvert 1-4\rvert=3$, $\lvert 1-9\rvert=8$, $\lvert 6-4\rvert=2$, and $\lvert 6-9\rvert=3$. We should print the minimum of these values, or $2$.
1 1 10 10
0
6 8 82 76 82 82 71 70 17 39 67 2 45 35 22 24
3