Home


Contest: Task: Related: TaskE TaskG

Score : $500$ points

Problem Statement

Let the similarity $f(X,Y)$ between two strings $X$ and $Y$ be the length of their longest common prefix.
For example, the similarity between abc and axbc is $1$, and the similarity between aaa and aaaa is $3$.

You are given a string $S$ of length $N$. Let $S_i$ be the suffix of $S$ beginning with the $i$-th character of $S$. For each $k=1,\ldots,N$, find $f(S_k,S_1)+f(S_k,S_2)+\ldots+f(S_k,S_N)$.

Constraints

  • $1 \leq N \leq 10^6$
  • $S$ is a string of length $N$ consisting of lowercase English letters.

Input

Input is given from Standard Input in the following format:

$N$
$S$

Output

Print $N$ lines.

The $i$-th line should contain the answer for $k=i$.


Sample Input 1

3
abb

Sample Output 1

3
3
2

$S_1$ is abb, $S_2$ is bb, and $S_3$ is b.

  • For $k=1$: $f(S_1,S_1)+f(S_1,S_2)+f(S_1,S_3)=3+0+0=3$.
  • For $k=2$: $f(S_2,S_1)+f(S_2,S_2)+f(S_2,S_3)=0+2+1=3$.
  • For $k=3$: $f(S_3,S_1)+f(S_3,S_2)+f(S_3,S_3)=0+1+1=2$.

Sample Input 2

11
mississippi

Sample Output 2

11
16
14
12
13
11
9
7
4
3
4