Score : $600$ points
Given are permutations of $(1, \dots, N)$: $p = (p_1, \dots, p_N)$ and $q = (q_1, \dots, q_N)$.
Find the number, modulo $(10^9 + 7)$, of permutations $r = (r_1, \dots, r_N)$ of $(1, \dots, N)$ such that $r_i \neq p_i$ and $r_i \neq q_i$ for every $i$ $(1 \leq i \leq N)$.
Input is given from Standard Input in the following format:
$N$ $p_1$ $\ldots$ $p_N$ $q_1$ $\ldots$ $q_N$
Print the answer.
4 1 2 3 4 2 1 4 3
4
There are four valid permutations: $(3, 4, 1, 2)$, $(3, 4, 2, 1)$, $(4, 3, 1, 2)$, and $(4, 3, 2, 1)$.
3 1 2 3 2 1 3
0
The answer may be $0$.
20 2 3 15 19 10 7 5 6 14 13 20 4 18 9 17 8 12 11 16 1 8 12 4 13 19 3 10 16 11 9 1 2 17 6 5 18 7 14 20 15
803776944
Be sure to print the count modulo $(10^9 + 7)$.