Home


Contest: Task: Related: TaskF TaskH

Score : $600$ points

Problem Statement

Given are permutations of $(1, \dots, N)$: $p = (p_1, \dots, p_N)$ and $q = (q_1, \dots, q_N)$.

Find the number, modulo $(10^9 + 7)$, of permutations $r = (r_1, \dots, r_N)$ of $(1, \dots, N)$ such that $r_i \neq p_i$ and $r_i \neq q_i$ for every $i$ $(1 \leq i \leq N)$.

Constraints

  • $1 \leq N \leq 3000$
  • $1 \leq p_i, q_i \leq N$
  • $p_i \neq p_j \, (i \neq j)$
  • $q_i \neq q_j \, (i \neq j)$
  • All values in input are integers.

Input

Input is given from Standard Input in the following format:

$N$
$p_1$ $\ldots$ $p_N$
$q_1$ $\ldots$ $q_N$

Output

Print the answer.


Sample Input 1

4
1 2 3 4
2 1 4 3

Sample Output 1

4

There are four valid permutations: $(3, 4, 1, 2)$, $(3, 4, 2, 1)$, $(4, 3, 1, 2)$, and $(4, 3, 2, 1)$.


Sample Input 2

3
1 2 3
2 1 3

Sample Output 2

0

The answer may be $0$.


Sample Input 3

20
2 3 15 19 10 7 5 6 14 13 20 4 18 9 17 8 12 11 16 1
8 12 4 13 19 3 10 16 11 9 1 2 17 6 5 18 7 14 20 15

Sample Output 3

803776944

Be sure to print the count modulo $(10^9 + 7)$.