Score : $500$ points
Given is a tree with $N$ vertices. The vertices are numbered $1,2,\ldots ,N$, and the $i$-th edge is an undirected edge connecting Vertices $u_i$ and $v_i$.
For each integer $i\,(1 \leq i \leq N)$, find $\sum_{j=1}^{N}dis(i,j)$.
Here, $dis(i,j)$ denotes the minimum number of edges that must be traversed to go from Vertex $i$ to Vertex $j$.
Input is given from Standard Input in the following format:
$N$ $u_1$ $v_1$ $u_2$ $v_2$ $\vdots$ $u_{N-1}$ $v_{N-1}$
Print $N$ lines.
The $i$-th line should contain $\sum_{j=1}^{N}dis(i,j)$.
3 1 2 2 3
3 2 3
We have:
$dis(1,1)+dis(1,2)+dis(1,3)=0+1+2=3$,
$dis(2,1)+dis(2,2)+dis(2,3)=1+0+1=2$,
$dis(3,1)+dis(3,2)+dis(3,3)=2+1+0=3$.
2 1 2
1 1
6 1 6 1 5 1 3 1 4 1 2
5 9 9 9 9 9