Score : $300$ points
There is a $10^{100} \times 7$ matrix $A$, where the $(i,j)$-th entry is $(i-1) \times 7 + j$ for every pair of integers $(i,j)\ (1 \leq i \leq 10^{100}, 1 \leq j \leq 7)$.
Given an $N \times M$ matrix $B$, determine whether $B$ is some (unrotated) rectangular part of $A$.
Input is given from Standard Input in the following format:
$N$ $M$ $B_{1,1}$ $B_{1,2}$ $\ldots$ $B_{1,M}$ $B_{2,1}$ $B_{2,2}$ $\ldots$ $B_{2,M}$ $\hspace{1.6cm}\vdots$ $B_{N,1}$ $B_{N,2}$ $\ldots$ $B_{N,M}$
If $B$ is some rectangular part of $A$, print Yes
; otherwise, print No
.
2 3 1 2 3 8 9 10
Yes
The given matrix $B$ is the top-left $2 \times 3$ submatrix of $A$.
2 1 1 2
No
Although the given matrix $B$ would match the top-left $1 \times 2$ submatrix of $A$ after rotating $90$ degrees, the Problem Statement asks whether $B$ is an unrotated part of $A$, so the answer is No
.
10 4 1346 1347 1348 1349 1353 1354 1355 1356 1360 1361 1362 1363 1367 1368 1369 1370 1374 1375 1376 1377 1381 1382 1383 1384 1388 1389 1390 1391 1395 1396 1397 1398 1402 1403 1404 1405 1409 1410 1411 1412
Yes