﻿ ABC237 B - Matrix Transposition - Atcoder

# Home

Score : $200$ points

### Problem Statement

You are given an $H$-by-$W$ matrix $A$.
The element at the $i$-th row from the top and $j$-th column from the left of $A$ is $A_{i,j}$.

Let $B$ be a $W$-by-$H$ matrix whose element at the $i$-th row from the top and $j$-th column from the left equals $A_{j, i}$.
That is, $B$ is the transpose of $A$.

Print $B$.

### Constraints

• $1\leq H,W \leq 10^5$
• $H \times W \leq 10^5$
• $1 \leq A_{i,j} \leq 10^9$
• All values in input are integers.

### Input

Input is given from Standard Input in the following format:

$H$ $W$
$A_{1,1}$ $A_{1,2}$ $\ldots$ $A_{1,W}$
$A_{2,1}$ $A_{2,2}$ $\ldots$ $A_{2,W}$
$\vdots$
$A_{H,1}$ $A_{H,2}$ $\ldots$ $A_{H,W}$


### 出力

Print $B$ in the following format:

$B_{1,1}$ $B_{1,2}$ $\ldots$ $B_{1,H}$
$B_{2,1}$ $B_{2,2}$ $\ldots$ $B_{2,H}$
$\vdots$
$B_{W,1}$ $B_{W,2}$ $\ldots$ $B_{W,H}$


### Sample Input 1

4 3
1 2 3
4 5 6
7 8 9
10 11 12


### Sample Output 1

1 4 7 10
2 5 8 11
3 6 9 12


For example, we have $A_{2,1}=4$, so the element at the $1$-st row from the top and $2$-nd column from the left of the transpose $B$ is $4$.

### Sample Input 2

2 2
1000000000 1000000000
1000000000 1000000000


### Sample Output 2

1000000000 1000000000
1000000000 1000000000