Score : $200$ points
You are given an $H$-by-$W$ matrix $A$.
The element at the $i$-th row from the top and $j$-th column from the left of $A$ is $A_{i,j}$.
Let $B$ be a $W$-by-$H$ matrix whose element at the $i$-th row from the top and $j$-th column from the left equals $A_{j, i}$.
That is, $B$ is the transpose of $A$.
Print $B$.
Input is given from Standard Input in the following format:
$H$ $W$ $A_{1,1}$ $A_{1,2}$ $\ldots$ $A_{1,W}$ $A_{2,1}$ $A_{2,2}$ $\ldots$ $A_{2,W}$ $\vdots$ $A_{H,1}$ $A_{H,2}$ $\ldots$ $A_{H,W}$
Print $B$ in the following format:
$B_{1,1}$ $B_{1,2}$ $\ldots$ $B_{1,H}$ $B_{2,1}$ $B_{2,2}$ $\ldots$ $B_{2,H}$ $\vdots$ $B_{W,1}$ $B_{W,2}$ $\ldots$ $B_{W,H}$
4 3 1 2 3 4 5 6 7 8 9 10 11 12
1 4 7 10 2 5 8 11 3 6 9 12
For example, we have $A_{2,1}=4$, so the element at the $1$-st row from the top and $2$-nd column from the left of the transpose $B$ is $4$.
2 2 1000000000 1000000000 1000000000 1000000000
1000000000 1000000000 1000000000 1000000000