Home


Contest: Task: Related: TaskF TaskH

Score : $600$ points

Problem Statement

Takahashi is in the square $(0, 0, 0)$ in an infinite three-dimensional grid.

He can teleport between squares. From the square $(x, y, z)$, he can move to $(x+1, y, z)$, $(x-1, y, z)$, $(x, y+1, z)$, $(x, y-1, z)$, $(x, y, z+1)$, or $(x, y, z-1)$ in one teleport. (Note that he cannot stay in the square $(x, y, z)$.)

Find the number of routes ending in the square $(X, Y, Z)$ after exactly $N$ teleports.

In other words, find the number of sequences of $N+1$ triples of integers $\big( (x_0, y_0, z_0), (x_1, y_1, z_1), (x_2, y_2, z_2), \ldots, (x_N, y_N, z_N)\big)$ that satisfy all three conditions below.

  • $(x_0, y_0, z_0) = (0, 0, 0)$.
  • $(x_N, y_N, z_N) = (X, Y, Z)$.
  • $|x_i-x_{i-1}| + |y_i-y_{i-1}| + |z_i-z_{i-1}| = 1$ for each $i = 1, 2, \ldots, N$.

Since the number can be enormous, print it modulo $998244353$.

Constraints

  • $1 \leq N \leq 10^7$
  • $-10^7 \leq X, Y, Z \leq 10^7$
  • $N$, $X$, $Y$, and $Z$ are integers.

Input

Input is given from Standard Input in the following format:

$N$ $X$ $Y$ $Z$

Output

Print the number modulo $998244353$.


Sample Input 1

3 2 0 -1

Sample Output 1

3

There are three routes ending in the square $(2, 0, -1)$ after exactly $3$ teleports:

  • $(0, 0, 0) \rightarrow (1, 0, 0) \rightarrow (2, 0, 0) \rightarrow(2, 0, -1)$
  • $(0, 0, 0) \rightarrow (1, 0, 0) \rightarrow (1, 0, -1) \rightarrow(2, 0, -1)$
  • $(0, 0, 0) \rightarrow (0, 0, -1) \rightarrow (1, 0, -1) \rightarrow(2, 0, -1)$

Sample Input 2

1 0 0 0

Sample Output 2

0

Note that exactly $N$ teleports should be performed, and they do not allow him to stay in the same position.


Sample Input 3

314 15 92 65

Sample Output 3

106580952

Be sure to print the number modulo $998244353$.