Home


Contest: Task: Related: TaskG TaskI

Score : $600$ points

Problem Statement

Among the sequences of length $K$ consisting of integers, $A=(A_1, \ldots, A_K)$, how many satisfy all of the conditions below?
Find the count modulo $998244353$.

  • $0\leq A_i \leq M-1$ for every $i(1\leq i\leq K)$.

  • $\displaystyle\prod_{i=1}^{K} A_i \equiv N \pmod M$.

Constraints

  • $1 \leq K \leq 10^9$
  • $0 \leq N \lt M \leq 10^{12}$
  • All values in input are integers.

Input

Input is given from Standard Input in the following format:

$K$ $N$ $M$

Output

Print the answer.


Sample Input 1

2 3 6

Sample Output 1

5

The five sequences $A$ satisfying the conditions are $(1,3),(3,1),(3,3),(3,5),(5,3)$.


Sample Input 2

10 0 2

Sample Output 2

1023

Sample Input 3

1000000000 20220326 1000000000000

Sample Output 3

561382653

Be sure to find the count modulo $998244353$.