Home


Contest: Task: Related: TaskB TaskD

Score : $300$ points

Problem Statement

How many integer sequences of length $N$, $A=(A_1, \ldots, A_N)$, satisfy all of the conditions below?

  • $1\le A_i \le M$ $(1 \le i \le N)$

  • $\displaystyle\sum _{i=1}^N A_i \leq K$

Since the count can get enormous, find it modulo $998244353$.

Constraints

  • $1 \leq N, M \leq 50$
  • $N \leq K \leq NM$
  • All values in input are integers.

Input

Input is given from Standard Input in the following format:

$N$ $M$ $K$

Output

Print the answer.


Sample Input 1

2 3 4

Sample Output 1

6

The following six sequences satisfy the conditions.

  • $(1,1)$
  • $(1,2)$
  • $(1,3)$
  • $(2,1)$
  • $(2,2)$
  • $(3,1)$

Sample Input 2

31 41 592

Sample Output 2

798416518

Be sure to print the count modulo $998244353$.