Score : $500$ points
How many integer sequences $A=(A_1,\ldots,A_N)$ of length $N$ satisfy all the conditions below?
$1\le A_i \le M$ $(1 \le i \le N)$
$|A_i - A_{i+1}| \geq K$ $(1 \le i \le N - 1)$
Since the count can be enormous, find it modulo $998244353$.
Input is given from Standard Input in the following format:
$N$ $M$ $K$
Print the count modulo $998244353$.
2 3 1
6
The following $6$ sequences satisfy the conditions.
3 3 2
2
The following $2$ sequences satisfy the conditions.
100 1000 500
657064711
Print the count modulo $998244353$.