Score : $600$ points
There are $H \times W$ cards on a grid of squares with $H$ rows and $W$ columns. For each pair of integers $(i, j)$ such that $1 \leq i \leq H, 1 \leq j \leq W$, the card at the $i$-th row and $j$-th column has an integer $A_{i, j}$ written on it.
Takahashi and Aoki will cooperate to play a game, which consists of the following steps.
Find their maximum possible score.
Input is given from Standard Input in the following format:
$H$ $W$ $A_{1, 1}$ $A_{1, 2}$ $\ldots$ $A_{1, W}$ $A_{2, 1}$ $A_{2, 2}$ $\ldots$ $A_{2, W}$ $\vdots$ $A_{H, 1}$ $A_{H, 2}$ $\ldots$ $A_{H, W}$
Print the answer.
2 3 -9 5 1 6 -2 4
9
If Takahashi chooses just the $2$-nd row and Aoki chooses just the $3$-rd column, they collect four cards, for a score of $6 + (-2) + 1 + 4 = 9$. This is the maximum possible.
15 20 -14 74 -48 38 -51 43 5 37 -39 -29 80 -44 -55 59 17 89 -37 -68 38 -16 14 31 43 -73 49 -7 -65 13 -40 -45 36 88 -54 -43 99 87 -94 57 -22 31 -85 67 -46 23 95 68 55 17 -56 51 -38 64 32 -19 65 -62 76 66 -53 -16 35 -78 -41 35 -51 -85 24 -22 45 -53 82 -30 39 19 -52 -3 -11 -67 -33 71 -75 45 -80 -42 -31 94 59 -58 39 -26 -94 -60 98 -1 21 25 0 -86 37 4 -41 66 -53 -55 55 98 23 33 -3 -27 7 -53 -64 68 -33 -8 -99 -15 50 40 66 53 -65 5 -49 81 45 1 33 19 0 20 -46 -82 14 -15 -13 -65 68 -65 50 -66 63 -71 84 51 -91 45 100 76 -7 -55 45 -72 18 40 -42 73 69 -36 59 -65 -30 89 -10 43 7 72 93 -70 23 86 81 16 25 -63 73 16 34 -62 22 -88 27 -69 82 -54 -92 32 -72 -95 28 -25 28 -55 97 87 91 17 21 -95 62 39 -65 -16 -84 51 62 -44 -60 -70 8 69 -7 74 79 -12 62 -86 6 -60 -72 -6 -79 -28 39 -42 -80 -17 -95 -28 -66 66 36 86 -68 91 -23 70 58 2 -19 -20 77 0 65 -94 -30 76 55 57 -8 59 -43 -6 -15 -83 8 29 16 34 79 40 86 -92 88 -70 -94 -21 50 -3 -42 -35 -79 91 96 -87 -93 -6 46 27 -94 -49 71 37 91 47 97 1 21 32 -100 -4 -78 -47 -36 -84 -61 86 -51 -9
1743