Score : $500$ points
There are $N$ balls arranged from left to right. The color of the $i$-th ball from the left is Color $C_i$, and an integer $X_i$ is written on it.
Takahashi wants to rearrange the balls so that the integers written on the balls are non-decreasing from left to right. In other words, his objective is to reach a situation where, for every $1\leq i\leq N-1$, the number written on the $(i+1)$-th ball from the left is greater than or equal to the number written on the $i$-th ball from the left.
For this, Takahashi can repeat the following operation any number of times (possibly zero):
Choose an integer $i$ such that $1\leq i\leq N-1$.
If the colors of the $i$-th and $(i+1)$-th balls from the left are different, pay a cost of $1$. (No cost is incurred if the colors are the same).
Swap the $i$-th and $(i+1)$-th balls from the left.
Find the minimum total cost Takahashi needs to pay to achieve his objective.
Input is given from Standard Input in the following format:
$N$ $C_1$ $C_2$ $\ldots$ $C_N$ $X_1$ $X_2$ $\ldots$ $X_N$
Print the minimum total cost Takahashi needs to pay to achieve his objective, as an integer.
5 1 5 2 2 1 3 2 1 2 1
6
Let us represent a ball as $($Color$,$ Integer$)$. The initial situation is $(1,3)$, $(5,2)$, $(2,1)$, $(2,2)$, $(1,1)$. Here is a possible sequence of operations for Takahashi:
After the last operation, the numbers written on the balls are $1,1,2,2,3$ from left to right, which achieves Takahashi's objective.
The $1$-st, $2$-nd, $3$-rd, $5$-th, $6$-th, and $7$-th operations incur a cost of $1$ each, for a total of $6$, which is the minimum. Note that the $4$-th operation does not incur a cost since the balls are both in Color $1$.
3 1 1 1 3 2 1
0
All balls are in the same color, so no cost is incurred in swapping balls.
3 3 1 2 1 1 2
0
Takahashi's objective is already achieved without any operation.