Home


Contest: Task: Related: TaskB

Score : $200$ points

Problem Statement

We have a rectangular parallelepiped of size $A×B×C$, built with blocks of size $1×1×1$. Snuke will paint each of the $A×B×C$ blocks either red or blue, so that:

  • There is at least one red block and at least one blue block.
  • The union of all red blocks forms a rectangular parallelepiped.
  • The union of all blue blocks forms a rectangular parallelepiped.

Snuke wants to minimize the difference between the number of red blocks and the number of blue blocks. Find the minimum possible difference.

Constraints

  • $2≤A,B,C≤10^9$

Input

The input is given from Standard Input in the following format:

$A$ $B$ $C$

Output

Print the minimum possible difference between the number of red blocks and the number of blue blocks.


Sample Input 1

3 3 3

Sample Output 1

9

For example, Snuke can paint the blocks as shown in the diagram below. There are $9$ red blocks and $18$ blue blocks, thus the difference is $9$.


Sample Input 2

2 2 4

Sample Output 2

0

For example, Snuke can paint the blocks as shown in the diagram below. There are $8$ red blocks and $8$ blue blocks, thus the difference is $0$.


Sample Input 3

5 3 5

Sample Output 3

15

For example, Snuke can paint the blocks as shown in the diagram below. There are $45$ red blocks and $30$ blue blocks, thus the difference is $9$.