Home


Contest: Task: Related: TaskB

Score : $300$ points

Problem Statement

There are an integer sequence $A_1,...,A_N$ consisting of $N$ terms, and $N$ buttons. When the $i$-th $(1 ≦ i ≦ N)$ button is pressed, the values of the $i$ terms from the first through the $i$-th are all incremented by $1$.

There is also another integer sequence $B_1,...,B_N$. Takahashi will push the buttons some number of times so that for every $i$, $A_i$ will be a multiple of $B_i$.

Find the minimum number of times Takahashi will press the buttons.

Constraints

  • All input values are integers.
  • $1 ≦ N ≦ 10^5$
  • $0 ≦ A_i ≦ 10^9(1 ≦ i ≦ N)$
  • $1 ≦ B_i ≦ 10^9(1 ≦ i ≦ N)$

Input

The input is given from Standard Input in the following format:

$N$
$A_1$ $B_1$
:
$A_N$ $B_N$

Output

Print an integer representing the minimum number of times Takahashi will press the buttons.


Sample Input 1

3
3 5
2 7
9 4

Sample Output 1

7

Press the first button twice, the second button twice and the third button three times.


Sample Input 2

7
3 1
4 1
5 9
2 6
5 3
5 8
9 7

Sample Output 2

22