Home


Contest: Task: Related: TaskD TaskF

Score : $1200$ points

Problem Statement

Find the number of the possible tuples of sequences $(A_0,A_1,...,A_N)$ that satisfy all of the following conditions, modulo $M$:

  • For every $i$ $(0\leq i\leq N)$, $A_i$ is a sequence of length $i$ consisting of integers between $1$ and $K$ (inclusive);
  • For every $i$ $(1\leq i\leq N)$, $A_{i-1}$ is a subsequence of $A_i$, that is, there exists $1\leq x_i\leq i$ such that the removal of the $x_i$-th element of $A_i$ would result in a sequence equal to $A_{i-1}$;
  • For every $i$ $(1\leq i\leq N)$, $A_i$ is lexicographically larger than $A_{i-1}$.

Constraints

  • $1 \leq N,K \leq 300$
  • $2 \leq M \leq 10^9$
  • $N$, $K$ and $M$ are integers.

Input

Input is given from Standard Input in the following format:

$N$ $K$ $M$

Output

Print the number of the possible tuples of sequences $(A_0,A_1,...,A_N)$, modulo $M$.


Sample Input 1

2 2 100

Sample Output 1

5

Five tuples below satisfy the conditions:

  • $(),(1),(1,1)$
  • $(),(1),(1,2)$
  • $(),(1),(2,1)$
  • $(),(2),(2,1)$
  • $(),(2),(2,2)$

Sample Input 2

4 3 999999999

Sample Output 2

358

Sample Input 3

150 150 998244353

Sample Output 3

186248260