Score : $1300$ points
A museum exhibits $N$ jewels, Jewel $1, 2, ..., N$. The coordinates of Jewel $i$ are $(x_i, y_i)$ (the museum can be regarded as a two-dimensional plane), and the value of that jewel is $v_i$.
Snuke the thief will steal some of these jewels.
There are $M$ conditions, Condition $1, 2, ..., M$, that must be met when stealing jewels, or he will be caught by the detective. Each condition has one of the following four forms:
L
, $a_i$, $b_i$) : Snuke can only steal at most $b_i$ jewels whose $x$ coordinates are $a_i$ or smaller.R
, $a_i$, $b_i$) : Snuke can only steal at most $b_i$ jewels whose $x$ coordinates are $a_i$ or larger.D
, $a_i$, $b_i$) : Snuke can only steal at most $b_i$ jewels whose $y$ coordinates are $a_i$ or smaller.U
, $a_i$, $b_i$) : Snuke can only steal at most $b_i$ jewels whose $y$ coordinates are $a_i$ or larger.Find the maximum sum of values of jewels that Snuke the thief can steal.
L
, R
, U
or D
.Input is given from Standard Input in the following format:
$N$ $x_1$ $y_1$ $v_1$ $x_2$ $y_2$ $v_2$ $:$ $x_N$ $y_N$ $v_N$ $M$ $t_1$ $a_1$ $b_1$ $t_2$ $a_2$ $b_2$ $:$ $t_M$ $a_M$ $b_M$
Print the maximum sum of values of jewels that Snuke the thief can steal.
7 1 3 6 1 5 9 3 1 8 4 3 8 6 2 9 5 4 11 5 7 10 4 L 3 1 R 2 3 D 5 3 U 4 2
36
Stealing Jewel $1, 5, 6$ and $7$ results in the total value of $36$.
3 1 2 3 4 5 6 7 8 9 1 L 100 0
0
4 1 1 10 1 2 11 2 1 12 2 2 13 3 L 8 3 L 9 2 L 10 1
13
10 66 47 71040136000 65 77 74799603000 80 53 91192869000 24 34 24931901000 91 78 49867703000 68 71 46108236000 46 73 74799603000 56 63 93122668000 32 51 71030136000 51 26 70912345000 21 L 51 1 L 7 0 U 47 4 R 92 0 R 91 1 D 53 2 R 65 3 D 13 0 U 63 3 L 68 3 D 47 1 L 91 5 R 32 4 L 66 2 L 80 4 D 77 4 U 73 1 D 78 5 U 26 5 R 80 2 R 24 5
305223377000