Score : $1600$ points
Snuke has permutations $(P_0,P_1,\cdots,P_{N-1})$ and $(Q_0,Q_1,\cdots,Q_{N-1})$ of $(0,1,\cdots,N-1)$.
Now, he will make new permutations $A$ and $B$ of $(0,1,\cdots,N-1)$, under the following conditions:
Let us define the distance of permutations $A$ and $B$ as the number of indices $i$ such that $A_i \neq B_i$. Find the maximum possible distance of $A$ and $B$.
Input is given from Standard Input in the following format:
$N$ $P_0$ $P_1$ $\cdots$ $P_{N-1}$ $Q_0$ $Q_1$ $\cdots$ $Q_{N-1}$
Print the maximum possible distance of $A$ and $B$.
4 2 1 3 0 0 2 3 1
3
For example, if we make $A=(0,1,2,3)$ and $B=(0,2,3,1)$, the distance will be $3$, which is the maximum result possible.
10 0 4 5 3 7 8 2 1 9 6 3 8 5 6 4 0 2 1 7 9
8
32 22 31 30 29 7 17 16 3 14 9 19 11 2 5 10 1 25 18 15 24 20 0 12 21 27 4 26 28 8 6 23 13 22 3 2 7 17 9 16 4 14 8 19 26 28 5 10 1 25 18 15 13 11 0 12 23 21 20 29 24 27 6 30 31
28