Score : $2100$ points
There are $N$ jewelry shops numbered $1$ to $N$.
Shop $i$ ($1 \leq i \leq N$) sells $K_i$ kinds of jewels. The $j$-th of these jewels ($1 \leq j \leq K_i$) has a size and price of $S_{i,j}$ and $P_{i,j}$, respectively, and the shop has $C_{i,j}$ jewels of this kind in stock.
A jewelry box is said to be good if it satisfies all of the following conditions:
Answer $Q$ questions. In the $i$-th question, given an integer $A_i$, find the minimum total price of jewels that need to be purchased to make $A_i$ good jewelry boxes. If it is impossible to make $A_i$ good jewelry boxes, report that fact.
Input is given from Standard Input in the following format:
$N$ Description of Shop $1$ Description of Shop $2$ $\vdots$ Description of Shop $N$ $M$ $U_1$ $V_1$ $W_1$ $U_2$ $V_2$ $W_2$ $\vdots$ $U_M$ $V_M$ $W_M$ $Q$ $A_1$ $A_2$ $\vdots$ $A_Q$
The description of Shop $i$ ($1 \leq i \leq N$) is in the following format:
$K_i$ $S_{i,1}$ $P_{i,1}$ $C_{i,1}$ $S_{i,2}$ $P_{i,2}$ $C_{i,2}$ $\vdots$ $S_{i,K_i}$ $P_{i,K_i}$ $C_{i,K_i}$
Print $Q$ lines. The $i$-th line should contain the minimum total price of jewels that need to be purchased to make $A_i$ good jewelry boxes, or $-1$ if it is impossible to make them.
3 2 1 10 1 3 1 1 3 1 10 1 2 1 1 3 10 1 2 1 1 1 3 10 1 2 1 2 0 2 3 0 3 1 2 3
3 42 -1
Let $(i,j)$ represent the $j$-th jewel sold at Shop $i$. The answer to each query is as follows:
5 5 86849520 30 272477201869 968023357 28 539131386006 478355090 8 194500792721 298572419 6 894877901270 203794105 25 594579473837 5 730211794 22 225797976416 842538552 9 420531931830 871332982 26 81253086754 553846923 29 89734736118 731788040 13 241088716205 5 903534485 22 140045153776 187101906 8 145639722124 513502442 9 227445343895 499446330 6 719254728400 564106748 20 333423097859 5 332809289 8 640911722470 969492694 21 937931959818 207959501 11 217019915462 726936503 12 382527525674 887971218 17 552919286358 5 444983655 13 487875689585 855863581 6 625608576077 885012925 10 105520979776 980933856 1 711474069172 653022356 19 977887412815 10 1 2 231274893 2 3 829836076 3 4 745221482 4 5 935448462 5 1 819308546 3 5 815839350 5 3 513188748 3 1 968283437 2 3 202352515 4 3 292999238 10 510266667947 252899314976 510266667948 374155726828 628866122125 628866122123 1 628866122124 510266667949 30000000000000
26533866733244 13150764378752 26533866733296 19456097795056 -1 33175436167096 52 33175436167152 26533866733352 -1