Score : $1200$ points
Snuke loves flags.
Snuke is placing $N$ flags on a line.
The $i$-th flag can be placed at either coordinate $x_i$ or coordinate $y_i$.
Snuke thinks that the flags look nicer when the smallest distance between two of them, $d$, is larger. Find the maximum possible value of $d$.
The input is given from Standard Input in the following format:
$N$ $x_1$ $y_1$ $:$ $x_N$ $y_N$
Print the answer.
3 1 3 2 5 1 9
4
The optimal solution is to place the first flag at coordinate $1$, the second flag at coordinate $5$ and the third flag at coordinate $9$. The smallest distance between two of the flags is $4$ in this case.
5 2 2 2 2 2 2 2 2 2 2
0
There can be more than one flag at the same position.
22 93 6440 78 6647 862 11 8306 9689 798 99 801 521 188 206 6079 971 4559 209 50 94 92 6270 5403 560 803 83 1855 99 42 504 75 484 629 11 92 122 3359 37 28 16 648 14 11 269
17