Score : $300$ points
Takahashi is now competing in a programming contest, but he received TLE in a problem where the answer is YES
or NO
.
When he checked the detailed status of the submission, there were $N$ test cases in the problem, and the code received TLE in $M$ of those cases.
Then, he rewrote the code to correctly solve each of those $M$ cases with $1/2$ probability in $1900$ milliseconds, and correctly solve each of the other $N-M$ cases without fail in $100$ milliseconds.
Now, he goes through the following process:
Let the expected value of the total execution time of the code be $X$ milliseconds. Print $X$ (as an integer).
Input is given from Standard Input in the following format:
$N$ $M$
Print $X$, the expected value of the total execution time of the code, as an integer. It can be proved that, under the constraints in this problem, $X$ is an integer not exceeding $10^9$.
1 1
3800
In this input, there is only one case. Takahashi will repeatedly submit the code that correctly solves this case with $1/2$ probability in $1900$ milliseconds.
The code will succeed in one attempt with $1/2$ probability, in two attempts with $1/4$ probability, and in three attempts with $1/8$ probability, and so on.
Thus, the answer is $1900 \times 1/2 + (2 \times 1900) \times 1/4 + (3 \times 1900) \times 1/8 + ... = 3800$.
10 2
18400
The code will take $1900$ milliseconds in each of the $2$ cases, and $100$ milliseconds in each of the $10-2=8$ cases. The probability of the code correctly solving all the cases is $1/2 \times 1/2 = 1/4$.
100 5
608000