Score : $900$ points
For a positive integer $n$, let us define $f(n)$ as the number of digits in base $10$.
You are given an integer $S$. Count the number of the pairs of positive integers $(l, r)$ ($l \leq r$) such that $f(l) + f(l + 1) + ... + f(r) = S$, and find the count modulo $10^9 + 7$.
Input is given from Standard Input in the following format:
$S$
Print the answer.
1
9
There are nine pairs $(l, r)$ that satisfies the condition: $(1, 1)$, $(2, 2)$, $...$, $(9, 9)$.
2
98
There are $98$ pairs $(l, r)$ that satisfies the condition, such as $(1, 2)$ and $(33, 33)$.
123
460191684
36018
966522825
1000
184984484