Score : $600$ points
Given are integer sequence of length $N$, $A = (A_1, A_2, \cdots, A_N)$, and an integer $K$.
For each $X$ such that $1 \le X \le K$, find the following value:
$\left(\displaystyle \sum_{L=1}^{N-1} \sum_{R=L+1}^{N} (A_L+A_R)^X\right) \bmod 998244353$
Input is given from Standard Input in the following format:
$N$ $K$ $A_1$ $A_2$ $\cdots$ $A_N$
Print $K$ lines.
The $X$-th line should contain the value $\left(\displaystyle \sum_{L=1}^{N-1} \sum_{R=L+1}^{N} (A_L+A_R)^X \right) \bmod 998244353$.
3 3 1 2 3
12 50 216
In the $1$-st line, we should print $(1+2)^1 + (1+3)^1 + (2+3)^1 = 3 + 4 + 5 = 12$.
In the $2$-nd line, we should print $(1+2)^2 + (1+3)^2 + (2+3)^2 = 9 + 16 + 25 = 50$.
In the $3$-rd line, we should print $(1+2)^3 + (1+3)^3 + (2+3)^3 = 27 + 64 + 125 = 216$.
10 10 1 1 1 1 1 1 1 1 1 1
90 180 360 720 1440 2880 5760 11520 23040 46080
2 5 1234 5678
6912 47775744 805306038 64822328 838460992
Be sure to print the sum modulo $998244353$.