Score : $600$ points
We have a sequence $A$ of $N$ non-negative integers.
Compute the sum of $\prod _{i = 1} ^N \dbinom{B_i}{A_i}$ over all sequences $B$ of $N$ non-negative integers whose sum is at most $M$, and print it modulo ($10^9 + 7$).
Here, $\dbinom{B_i}{A_i}$, the binomial coefficient, denotes the number of ways to choose $A_i$ objects from $B_i$ objects, and is $0$ when $B_i < A_i$.
Input is given from Standard Input in the following format:
$N$ $M$ $A_1$ $A_2$ $\ldots$ $A_N$
Print the sum of $\prod _{i = 1} ^N \dbinom{B_i}{A_i}$, modulo $(10^9 + 7)$.
3 5 1 2 1
8
There are four sequences $B$ such that $\prod _{i = 1} ^N \dbinom{B_i}{A_i}$ is at least $1$:
$B = \{1, 2, 1\}$, where $\prod _{i = 1} ^N \dbinom{B_i}{A_i} = \dbinom{1}{1} \times \dbinom{2}{2} \times \dbinom{1}{1} = 1$;
$B = \{2, 2, 1\}$, where $\prod _{i = 1} ^N \dbinom{B_i}{A_i} = \dbinom{2}{1} \times \dbinom{2}{2} \times \dbinom{1}{1} = 2$;
$B = \{1, 3, 1\}$, where $\prod _{i = 1} ^N \dbinom{B_i}{A_i} = \dbinom{1}{1} \times \dbinom{3}{2} \times \dbinom{1}{1} = 3$;
$B = \{1, 2, 2\}$, where $\prod _{i = 1} ^N \dbinom{B_i}{A_i} = \dbinom{1}{1} \times \dbinom{2}{2} \times \dbinom{2}{1} = 2$.
The sum of these is $1 + 2 + 3 + 2 = 8$.
10 998244353 31 41 59 26 53 58 97 93 23 84
642612171