Home


Contest: Task: Related: TaskB

Score : $300$ points

Problem Statement

Given positive integers $N$ and $M$, find the remainder when $\lfloor \frac{10^N}{M} \rfloor$ is divided by $M$.

What is $\lfloor x \rfloor$? $\lfloor x \rfloor$ denotes the greatest integer not exceeding $x$. For example:
  • $\lfloor 2.5 \rfloor = 2$
  • $\lfloor 3 \rfloor = 3$
  • $\lfloor 9.9999999 \rfloor = 9$
  • $\lfloor \frac{100}{3} \rfloor = \lfloor 33.33... \rfloor = 33$

Constraints

  • $1 \leq N \leq 10^{18}$
  • $1 \leq M \leq 10000$

Input

Input is given from Standard Input in the following format:

$N$ $M$

Output

Print the answer.


Sample Input 1

1 2

Sample Output 1

1

We have $\lfloor \frac{10^1}{2} \rfloor = 5$, so we should print the remainder when $5$ is divided by $2$, that is, $1$.


Sample Input 2

2 7

Sample Output 2

0

Sample Input 3

1000000000000000000 9997

Sample Output 3

9015