Score: $400$ points
We have $N$ integers $A_1, A_2, ..., A_N$.
There are $\frac{N(N-1)}{2}$ ways to choose two of them and form a pair. If we compute the product of each of those pairs and sort the results in ascending order, what will be the $K$-th number in that list?
Input is given from Standard Input in the following format:
$N$ $K$ $A_1$ $A_2$ $\dots$ $A_N$
Print the answer.
4 3 3 3 -4 -2
-6
There are six ways to form a pair. The products of those pairs are $9$, $-12$, $-6$, $-12$, $-6$, $8$.
Sorting those numbers in ascending order, we have $-12$, $-12$, $-6$, $-6$, $8$, $9$. The third number in this list is $-6$.
10 40 5 4 3 2 -1 0 0 0 0 0
6
30 413 -170202098 -268409015 537203564 983211703 21608710 -443999067 -937727165 -97596546 -372334013 398994917 -972141167 798607104 -949068442 -959948616 37909651 0 886627544 -20098238 0 -948955241 0 -214720580 277222296 -18897162 834475626 0 -425610555 110117526 663621752 0
448283280358331064