Score : $200$ points
There are $N$ points in a two-dimensional plane. The coordinates of the $i$-th point are $(x_i,y_i)$.
Find the maximum length of a segment connecting two of these points.
Input is given from Standard Input in the following format:
$N$ $x_1$ $y_1$ $x_2$ $y_2$ $\hspace{0.4cm} \vdots$ $x_N$ $y_N$
Print the maximum length of a segment connecting two of the points.
Your answer will be considered correct when the absolute or relative error from the judge's answer is at most $10^{-6}$.
3 0 0 0 1 1 1
1.4142135624
For the $1$-st and $3$-rd points, the length of the segment connecting them is $\sqrt 2 = 1.41421356237\dots$, which is the maximum length.
5 315 271 -2 -621 -205 -511 -952 482 165 463
1455.7159750446