Home


Contest: Task: Related: TaskF TaskH

Score : $600$ points

Problem Statement

You are given an undirected tree with $N$ vertices.
Let us call the vertices Vertex $1$, Vertex $2$, $\ldots$, Vertex $N$. For each $1\leq i\leq N-1$, the $i$-th edge connects Vertex $U_i$ and Vertex $V_i$.
Additionally, each vertex is assigned a positive integer: Vertex $i$ is assigned $A_i$.

The cost between two distinct vertices $s$ and $t$, $C(s,t)$, is defined as follows.

Let $p_1(=s)$, $p_2$, $\ldots$, $p_k(=t)$ be the vertices of the simple path connecting Vertex $s$ and Vertex $t$, where $k$ is the number of vertices in the path (including the endpoints).
Then, let $C(s,t)=k\times \gcd (A_{p_1},A_{p_2},\ldots,A_{p_k})$,
where $\gcd (X_1,X_2,\ldots, X_k)$ denotes the greatest common divisor of $X_1,X_2,\ldots, X_k$.

Find $\displaystyle\sum_{i=1}^{N-1}\sum_{j=i+1}^N C(i,j)$, modulo $998244353$.

Constraints

  • $2 \leq N \leq 10^5$
  • $1 \leq A_i\leq 10^5$
  • $1\leq U_i<V_i\leq N$
  • All values in input are integers.
  • The given graph is a tree.

Input

Input is given from Standard Input in the following format:

$N$
$A_1$ $A_2$ $\cdots$ $A_N$
$U_1$ $V_1$
$U_2$ $V_2$
$\vdots$
$U_{N-1}$ $V_{N-1}$

Output

Print $\displaystyle\sum_{i=1}^{N-1}\sum_{j=i+1}^N C(i,j)$, modulo $998244353$.


Sample Input 1

4
24 30 28 7
1 2
1 3
3 4

Sample Output 1

47

There are edges directly connecting Vertex $1$ and $2$, Vertex $1$ and $3$, and Vertex $3$ and $4$. Thus, the costs are computed as follows.

  • $C(1,2)=2\times \gcd(24,30)=12$
  • $C(1,3)=2\times \gcd(24,28)=8$
  • $C(1,4)=3\times \gcd(24,28,7)=3$
  • $C(2,3)=3\times \gcd(30,24,28)=6$
  • $C(2,4)=4\times \gcd(30,24,28,7)=4$
  • $C(3,4)=2\times \gcd(28,7)=14$

Thus, the sought value is $\displaystyle\sum_{i=1}^{3}\sum_{j=i+1}^4 C(i,j)=(12+8+3)+(6+4)+14=47$ modulo $998244353$, which is $47$.


Sample Input 2

10
180 168 120 144 192 200 198 160 156 150
1 2
2 3
2 4
2 5
5 6
4 7
7 8
7 9
9 10

Sample Output 2

1184