Home


Contest: Task: Related: TaskG TaskI

Score : $600$ points

Problem Statement

You are given a permutation $P=(P_1,\ldots,P_N)$ of $(1,\ldots,N)$, and an integer $K$.

Find the number of pairs of integers $(L, R)$ that satisfy all of the following conditions:

  • $1 \leq L \leq R \leq N$

  • $\mathrm{max}(P_L,\ldots,P_R) - \mathrm{min}(P_L,\ldots,P_R) \leq R - L + K$

Constraints

  • $1 \leq N \leq 1.4\times 10^5$
  • $P$ is a permutation of $(1,\ldots,N)$.
  • $0 \leq K \leq 3$
  • All values in input are integers.

Input

Input is given from Standard Input in the following format:

$N$ $K$
$P_1$ $P_2$ $\ldots$ $P_N$

Output

Print the answer.


Sample Input 1

4 1
1 4 2 3

Sample Output 1

9

The following nine pairs $(L, R)$ satisfy the conditions.

  • $(1,1)$
  • $(1,3)$
  • $(1,4)$
  • $(2,2)$
  • $(2,3)$
  • $(2,4)$
  • $(3,3)$
  • $(3,4)$
  • $(4,4)$

For $(L,R) = (1,2)$, we have $\mathrm{max}(A_1,A_2) -\mathrm{min}(A_1,A_2) = 4-1 = 3$ and $R-L+K=2-1+1 = 2$, not satisfying the condition.


Sample Input 2

2 0
2 1

Sample Output 2

3

Sample Input 3

10 3
3 7 10 1 9 5 4 8 6 2

Sample Output 3

37