Home


Contest: Task: Related: TaskC TaskE

Score : $1100$ points

Problem Statement

Let $f(A, B)$, where $A$ and $B$ are positive integers, be the string satisfying the following conditions:

  • $f(A, B)$ has length $A + B$;
  • $f(A, B)$ contains exactly $A$ letters A and exactly $B$ letters B;
  • The length of the longest substring of $f(A, B)$ consisting of equal letters (ex., AAAAA or BBBB) is as small as possible under the conditions above;
  • $f(A, B)$ is the lexicographically smallest string satisfying the conditions above.

For example, $f(2, 3)$ = BABAB, and $f(6, 4)$ = AABAABAABB.

Answer $Q$ queries: find the substring of $f(A_i, B_i)$ from position $C_i$ to position $D_i$ (1-based).

Constraints

  • $1 \leq Q \leq 10^3$
  • $1 \leq A_i, B_i \leq 5 \times 10^8$
  • $1 \leq C_i \leq D_i \leq A_i + B_i$
  • $D_i - C_i + 1 \leq 100$
  • All input values are integers.

Partial Score

  • $500$ points will be awarded for passing the testset satisfying $1 \leq A_i, B_i \leq 10^3$.

Input

Input is given from Standard Input in the following format:

$Q$
$A_1$ $B_1$ $C_1$ $D_1$
$A_2$ $B_2$ $C_2$ $D_2$
$:$
$A_Q$ $B_Q$ $C_Q$ $D_Q$

Output

For each query $i$ in order of input, print a line containing the substring of $f(A_i, B_i)$ from position $C_i$ to position $D_i$ (1-based).


Sample Input 1

5
2 3 1 5
6 4 1 10
2 3 4 4
6 4 3 7
8 10 5 8

Sample Output 1

BABAB
AABAABAABB
A
BAABA
ABAB