Score : $300$ points
When $l$ is an odd number, the median of $l$ numbers $a_1, a_2, ..., a_l$ is the $(\frac{l+1}{2})$-th largest value among $a_1, a_2, ..., a_l$.
You are given $N$ numbers $X_1, X_2, ..., X_N$, where $N$ is an even number. For each $i = 1, 2, ..., N$, let the median of $X_1, X_2, ..., X_N$ excluding $X_i$, that is, the median of $X_1, X_2, ..., X_{i-1}, X_{i+1}, ..., X_N$ be $B_i$.
Find $B_i$ for each $i = 1, 2, ..., N$.
Input is given from Standard Input in the following format:
$N$ $X_1$ $X_2$ ... $X_N$
Print $N$ lines. The $i$-th line should contain $B_i$.
4 2 4 4 3
4 3 3 4
2 1 2
2 1
6 5 5 4 4 3 3
4 4 4 4 4 4