Home


Contest: Task: Related: TaskA TaskC

Score : $400$ points

Problem Statement

Let ${\rm comb}(n,r)$ be the number of ways to choose $r$ objects from among $n$ objects, disregarding order. From $n$ non-negative integers $a_1, a_2, ..., a_n$, select two numbers $a_i > a_j$ so that ${\rm comb}(a_i,a_j)$ is maximized. If there are multiple pairs that maximize the value, any of them is accepted.

Constraints

  • $2 \leq n \leq 10^5$
  • $0 \leq a_i \leq 10^9$
  • $a_1,a_2,...,a_n$ are pairwise distinct.
  • All values in input are integers.

Input

Input is given from Standard Input in the following format:

$n$
$a_1$ $a_2$ $...$ $a_n$

Output

Print $a_i$ and $a_j$ that you selected, with a space in between.


Sample Input 1

5
6 9 4 2 11

Sample Output 1

11 6

$\rm{comb}(a_i,a_j)$ for each possible selection is as follows:

  • $\rm{comb}(4,2)=6$
  • $\rm{comb}(6,2)=15$
  • $\rm{comb}(6,4)=15$
  • $\rm{comb}(9,2)=36$
  • $\rm{comb}(9,4)=126$
  • $\rm{comb}(9,6)=84$
  • $\rm{comb}(11,2)=55$
  • $\rm{comb}(11,4)=330$
  • $\rm{comb}(11,6)=462$
  • $\rm{comb}(11,9)=55$

Thus, we should print $11$ and $6$.


Sample Input 2

2
100 0

Sample Output 2

100 0